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Recap
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We introduced the tensor network diagram

We discussed some applications in quantum computing (simulating quantum circuits) and quantum physics 
(MPS, DMRG, etc) 

Today: we’ll talk about a classical application of tensor network: orbit recovery



Today’s plan
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• Problem setup and examples

• Some easy algorithms

• Heterogeneous setting

• Main result: a spectral algorithm for heterogeneous MRA

• The trace method

• The blueprint of the algorithm

• Proof: the signal part

• Proof: the noise part

• Generalizations



Orbit recovery
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Setup: 

• Let 𝑥𝑥 ∈ ℝ𝑛𝑛 be an unknown signal 

• Let 𝐺𝐺 be a group with group action 𝒫𝒫:𝐺𝐺 → ℝ𝑛𝑛×𝑛𝑛

• We get measurements of the form:

𝑦𝑦𝑖𝑖 = 𝒫𝒫 𝑔𝑔𝑖𝑖 𝑥𝑥 + 𝜂𝜂𝑖𝑖
 𝑔𝑔𝑖𝑖 is an independent, uniformly random element from 𝐺𝐺 (under the Haar measure)

 𝜂𝜂𝑖𝑖 is an independent Gaussian noise 𝒩𝒩 0,𝜎𝜎2𝐼𝐼

Goal: recover �𝑥𝑥 close to some element in the orbit

𝒫𝒫 𝑔𝑔 𝑥𝑥 𝑔𝑔 ∈ 𝐺𝐺

For simplicity, we’ll use 𝑔𝑔 ⋅ 𝑥𝑥 to denote the group action



Example 1: multi-reference alignment (MRA)
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• Discrete MRA: 𝐺𝐺 = ℤ𝑛𝑛 (random shift)

• Continuous MRA: 𝐺𝐺 = 𝑆𝑆𝑆𝑆 2  (2D random rotation)



Example 2: cryo-electron tomography (cryo-ET)
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• 𝐺𝐺 = 𝑆𝑆𝑆𝑆 3

+  noise



Cryo-electron microscopy (cryo-EM)
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• Cryo-ET + 2D projection
𝑦𝑦𝑖𝑖 = Π 𝑔𝑔𝑖𝑖 ⋅ 𝑥𝑥 + 𝜂𝜂𝑖𝑖



Today’s plan
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• Problem setup and examples

• Some easy algorithms

• Heterogeneous setting

• Main result: a spectral algorithm for heterogeneous MRA

• The trace method

• The blueprint of the algorithm

• Proof: the signal part

• Proof: the noise part

• Generalizations



Discrete MRA
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• For 𝑔𝑔 ∈ 𝐺𝐺 = ℤ𝑛𝑛, we have

𝑔𝑔 ⋅ 𝑥𝑥 𝑖𝑖 = 𝑥𝑥𝑖𝑖−𝑔𝑔 (mod 𝑛𝑛)

• Perry-Weed-Bandeira-Rigollet-Singer, 2017: algorithm for discrete MRA with optimal sample complexity 
(𝑚𝑚 ∼ 𝜎𝜎6)

• We have seen this algorithm: learning mixtures of Gaussians

• Each sample 𝑦𝑦𝑖𝑖 = 𝑔𝑔𝑖𝑖 ⋅ 𝑥𝑥 + 𝜂𝜂𝑖𝑖. If 𝑔𝑔𝑖𝑖 is fixed, then 

𝑦𝑦𝑖𝑖 ∼ 𝒩𝒩 𝑔𝑔𝑖𝑖 ⋅ 𝑥𝑥,𝜎𝜎2𝐼𝐼

• Thus, the sample distribution can be expressed as a mixture of Gaussian with 𝑛𝑛 components:
𝜇𝜇𝑖𝑖 = 𝑔𝑔𝑖𝑖 ⋅ 𝑥𝑥 ∀𝑖𝑖 ∈ 𝑛𝑛

• To apply Jennrich’s algorithm, we compute the 3rd-moment, which needs ∼ 𝜎𝜎6 samples



Continuous MRA
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For 𝑔𝑔 ∈ 𝐺𝐺 = 𝑆𝑆𝑆𝑆 2 , what is 𝑔𝑔 ⋅ 𝑥𝑥 for 𝑥𝑥 ∈ ℝ𝑛𝑛?

•  

• 𝐺𝐺 can be parameterized by 𝑔𝑔 ∈ 0,2𝜋𝜋

• It is convenient to work in the Fourier basis:

�𝑥𝑥𝑗𝑗 ≔
1
2
𝑥𝑥𝑗𝑗 + 𝐢𝐢𝑥𝑥−𝑗𝑗 , �𝑥𝑥−𝑗𝑗 ≔

1
2
𝑥𝑥𝑗𝑗 − 𝐢𝐢𝑥𝑥−𝑗𝑗  ∀ 𝑗𝑗 > 0

• You can check that in the Fourier basis, 𝑔𝑔 is a diagonal matrix ( �𝑥𝑥𝑗𝑗 ↦ 𝑒𝑒𝐢𝐢𝑗𝑗𝑗𝑗 �𝑥𝑥𝑗𝑗)

𝑥𝑥1 𝑥𝑥2 𝑥𝑥3 𝑥𝑥4 ⋯ 𝑥𝑥𝑛𝑛
2

𝑥𝑥−1 𝑥𝑥−2 𝑥𝑥−3 𝑥𝑥4 ⋯ 𝑥𝑥−𝑛𝑛2
𝑥𝑥 =

𝑥𝑥𝑗𝑗
𝑥𝑥−𝑗𝑗 ⟼ cos 𝑗𝑗𝑗𝑗 − sin 𝑗𝑗𝑗𝑗

sin 𝑗𝑗𝑗𝑗 cos 𝑗𝑗𝑗𝑗
𝑥𝑥𝑗𝑗
𝑥𝑥−𝑗𝑗

𝑔𝑔

The linear map 𝑔𝑔 ∈ ℝ𝑛𝑛×𝑛𝑛 is block-diagonal



Method of moments
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• Define the 𝑝𝑝-th moment in the Fourier basis:

�𝑇𝑇𝑝𝑝 �𝑥𝑥 ≔ 𝔼𝔼𝑔𝑔 𝑔𝑔 ⋅ �𝑥𝑥 ⊗𝑝𝑝 ∈ ℝ𝑛𝑛×𝑝𝑝

• For any coordinates 𝑗𝑗1, … , 𝑗𝑗𝑝𝑝 ∈ 𝑛𝑛 , we have

�𝑇𝑇𝑝𝑝 �𝑥𝑥 𝑗𝑗1,…,𝑗𝑗𝑝𝑝 = 𝔼𝔼𝑔𝑔 𝑔𝑔 ⋅ �𝑥𝑥 𝑗𝑗1 𝑔𝑔 ⋅ �𝑥𝑥 𝑗𝑗2 ⋯ 𝑔𝑔 ⋅ �𝑥𝑥 𝑗𝑗𝑝𝑝

= 𝔼𝔼𝑔𝑔 𝑒𝑒𝐢𝐢𝑔𝑔𝑗𝑗1 �𝑥𝑥𝑗𝑗1𝑒𝑒
𝐢𝐢𝑔𝑔𝑗𝑗2 �𝑥𝑥𝑗𝑗2 ⋯𝑒𝑒𝐢𝐢𝑔𝑔𝑗𝑗𝑝𝑝 �𝑥𝑥𝑗𝑗𝑝𝑝

= 𝔼𝔼𝑔𝑔 𝑒𝑒𝐢𝐢𝑔𝑔 𝑗𝑗1+⋯+𝑗𝑗𝑝𝑝 �𝑥𝑥𝑗𝑗1 ⋯ �𝑥𝑥𝑗𝑗𝑝𝑝
= 𝟏𝟏𝑗𝑗1+⋯+𝑗𝑗𝑝𝑝=0 ⋅ �𝑥𝑥𝑗𝑗1 ⋯ �𝑥𝑥𝑗𝑗𝑝𝑝

• Given access to �𝑇𝑇1, … , �𝑇𝑇𝑝𝑝, can we reverse-engineer �𝑥𝑥?



Frequency marching

September 17, 2025 11

�𝑇𝑇𝑝𝑝 �𝑥𝑥 𝑗𝑗1,…,𝑗𝑗𝑝𝑝 = 𝟏𝟏𝑗𝑗1+⋯+𝑗𝑗𝑝𝑝=0 ⋅ �𝑥𝑥𝑗𝑗1 ⋯ �𝑥𝑥𝑗𝑗𝑝𝑝

• Consider the second moment:
�𝑇𝑇2 �𝑥𝑥 𝑗𝑗,−𝑗𝑗 = �𝑥𝑥𝑗𝑗 �𝑥𝑥−𝑗𝑗 = �𝑥𝑥𝑗𝑗

2 ∀ 𝑗𝑗 > 0

• Thus, we can learn �𝑥𝑥𝑗𝑗  for every 𝑗𝑗 from �𝑇𝑇2

• To learn the phases, consider the third moment:
�𝑇𝑇3 �𝑥𝑥 𝑗𝑗1,𝑗𝑗2,− 𝑗𝑗1+𝑗𝑗2 = �𝑥𝑥𝑗𝑗1 �𝑥𝑥𝑗𝑗2 �𝑥𝑥− 𝑗𝑗1+𝑗𝑗2

• Since 𝑔𝑔 ⋅ �𝑥𝑥 1 = 𝑒𝑒𝐢𝐢𝑔𝑔 �𝑥𝑥1, there exists an orbit such that �𝑥𝑥1’s phase 𝜙𝜙1 = 0

• Then, using �𝑇𝑇3 �𝑥𝑥 −1,−1,2 = �𝑥𝑥1 2 �𝑥𝑥2 and |�𝑥𝑥1|, we learn 𝜙𝜙2

• Next, using �𝑇𝑇3 �𝑥𝑥 −1,−2,3 = �𝑥𝑥1 �𝑥𝑥−2 �𝑥𝑥3 and �𝑥𝑥−2 = �𝑥𝑥2∗, we learn 𝜙𝜙3

• We can repeat this procedure until we have learned all the phases



Today’s plan
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• Problem setup and examples

• Some easy algorithms

• Heterogeneous setting

• Main result: a spectral algorithm for heterogeneous MRA

• The trace method

• The blueprint of the algorithm

• Proof: the signal part

• Proof: the noise part

• Generalizations



Heterogeneous MRA
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What if there are multiple molecules (or multiple conformations of the same molecule)?

• Suppose there are 𝐾𝐾 unknown vectors 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝐾𝐾

• We observe 𝑦𝑦𝑖𝑖 = 𝑔𝑔𝑖𝑖 ⋅ 𝑥𝑥𝑘𝑘𝑖𝑖 + 𝜂𝜂𝑖𝑖, where 𝑘𝑘𝑖𝑖 ∼𝑢𝑢 𝐾𝐾 , 𝑔𝑔𝑖𝑖 ∼𝑢𝑢 𝐺𝐺, and 𝜂𝜂𝑖𝑖 ∼ 𝒩𝒩 0,𝜎𝜎2𝐼𝐼

• Can we still use frequency marching to recover 𝑥𝑥𝑘𝑘 ?



Frequency marching does not work
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• Consider the Fourier transform of the 𝑝𝑝-th moment:

�𝑇𝑇𝑝𝑝 �𝑥𝑥𝑘𝑘 ≔ 𝔼𝔼𝑘𝑘,𝑔𝑔 𝑔𝑔 ⋅ �𝑥𝑥𝑘𝑘 ⊗𝑝𝑝 =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝔼𝔼𝑔𝑔 𝑔𝑔 ⋅ �𝑥𝑥 ⊗𝑝𝑝

• Thus, we have

�𝑇𝑇𝑝𝑝 �𝑥𝑥𝑘𝑘 𝑗𝑗1,…,𝑗𝑗𝑝𝑝
= 𝟏𝟏𝑗𝑗1+⋯+𝑗𝑗𝑝𝑝=0 ⋅

1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

�𝑥𝑥𝑗𝑗1
𝑘𝑘 ⋯ �𝑥𝑥𝑗𝑗𝑝𝑝

𝑘𝑘

• Frequency marching breaks down from the first step:

�𝑇𝑇2 �𝑥𝑥𝑘𝑘 𝑗𝑗,−𝑗𝑗 =
1
𝐾𝐾
�
𝑘𝑘=1

𝐾𝐾

𝑥𝑥𝑘𝑘 2

Signals are entangled!



Does tensor decomposition help?
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• Consider the third moment:

𝑇𝑇3 𝑥𝑥𝑘𝑘 ≔
1

𝐾𝐾 𝐺𝐺
�
𝑘𝑘=1

𝐾𝐾

�
𝑔𝑔∈𝐺𝐺

𝑔𝑔 ⋅ 𝑥𝑥𝑘𝑘 ⊗3

• If 𝐺𝐺 is a finite group, then this is a rank-𝐾𝐾|𝐺𝐺| tensor

• If undercomplete, then we can just run Jennrich’s algorithm, and we’re done!

• If overcomplete, we may either use higher moments (e.g., 𝑇𝑇5) or assume 𝑥𝑥𝑘𝑘 are random vectors

• Unfortunately, 𝑆𝑆𝑆𝑆 2  is a continuous group (or Lie group) → this tensor has ∞ rank

• Moreover, the decomposition is not unique: if 𝑇𝑇3 = ∑𝑖𝑖=1𝑟𝑟 𝑎𝑎𝑖𝑖
⊗3 is a solution, then there are ∞-many 

solutions 𝑇𝑇3 = ∑𝑖𝑖=1𝑟𝑟 𝑔𝑔 ⋅ 𝑎𝑎𝑖𝑖 ⊗3 for any 𝑔𝑔 ∈ 𝐺𝐺
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• Problem setup and examples

• Some easy algorithms

• Heterogeneous setting

• Main result: a spectral algorithm for heterogeneous MRA

• The trace method

• The blueprint of the algorithm

• Proof: the signal part

• Proof: the noise part

• Generalizations



List recovery for average-case heterogeneous MRA

September 17, 2025 17

Theorem (Moitra-Wein, 2018).

Let 𝑥𝑥1, … , 𝑥𝑥𝐾𝐾 ∈ ℝ𝑛𝑛 be drawn independently from 𝒩𝒩 0, 1
𝑛𝑛
𝐼𝐼 . 

We are given the tensor 𝒯𝒯 = 𝑇𝑇 + 𝐸𝐸 ∈ ℝ𝑛𝑛×𝑛𝑛×𝑛𝑛 where  𝐸𝐸 ≤ ⁄1 poly 𝑛𝑛  and 

𝑇𝑇 = �
𝑘𝑘=1

𝐾𝐾

𝔼𝔼𝑔𝑔 𝑔𝑔 ⋅ 𝑥𝑥𝐾𝐾 ⊗3

There is an algorithm that runs in time poly 𝑛𝑛  and outputs a list of unit vectors 𝜏𝜏1, … , 𝜏𝜏𝐿𝐿 ∈ ℝ𝑛𝑛 
with 𝐿𝐿 = poly 𝑛𝑛  that has the following guarantee. With high probability over both 𝑥𝑥1, … , 𝑥𝑥𝐾𝐾  and 
the algorithm’s randomness, 

∀𝑘𝑘 ∈ 𝐾𝐾 ,∃ 𝑖𝑖 ∈ 𝐿𝐿  s. t.  𝜏𝜏𝑖𝑖 , 𝑥𝑥𝑘𝑘
2 ≥ 0.99



General recipe for spectral methods
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Given input tensor 𝑇𝑇

• Step 1: Construct a new tensor 𝐵𝐵 by contracting multiple copies of 𝑇𝑇 
according to a tensor network

• Step 2: Flatten 𝐵𝐵 to form a symmetric matrix 𝑀𝑀

• Step 3: Compute the leading eigenvector of 𝑀𝑀

We use the trace method to show that the top eigenvector is close to the orbit of 𝑥𝑥𝑘𝑘



Today’s plan
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• Problem setup and examples

• Some easy algorithms

• Heterogeneous setting

• Main result: a spectral algorithm for heterogeneous MRA

• The trace method

• The blueprint of the algorithm

• Proof: the signal part

• Proof: the noise part

• Generalizations



Interlude: the trace method

September 17, 2025 20

Let 𝑀𝑀 be a random matrix, and our goal is to bound its spectral norm

Basic idea:

tr 𝑀𝑀2𝑘𝑘 = �
𝑖𝑖

𝜆𝜆𝑖𝑖2𝑘𝑘 ≥ 𝑀𝑀 2𝑘𝑘

Applying Markov’s inequality, we get the bound

Pr 𝑀𝑀 ≥ 𝑡𝑡 = Pr 𝑀𝑀 2𝑘𝑘 ≥ 𝑡𝑡2𝑘𝑘 ≤
𝔼𝔼 tr 𝑀𝑀2𝑘𝑘

𝑡𝑡2𝑘𝑘

Tensor network!



Example
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Suppose 𝑀𝑀 is an 𝑛𝑛 × 𝑛𝑛 symmetric matrix with i.i.d. Rademacher entries and zeros along the diagonal

𝑖𝑖1
𝑖𝑖2

𝑖𝑖3
𝑖𝑖4

𝑖𝑖5

𝑖𝑖6 𝑀𝑀𝑖𝑖1,𝑖𝑖2𝑀𝑀𝑖𝑖2,𝑖𝑖3𝑀𝑀𝑖𝑖3,𝑖𝑖4𝑀𝑀𝑖𝑖4,𝑖𝑖5𝑀𝑀𝑖𝑖5,𝑖𝑖6𝑀𝑀𝑖𝑖6,𝑖𝑖1𝔼𝔼 = 1

iff every 𝑖𝑖𝑗𝑗 , 𝑖𝑖𝑗𝑗+1  occurs even number of times

Combinatorial problem: tr 𝑀𝑀2𝑘𝑘  equals to the number of sequences 𝑖𝑖1, … , 𝑖𝑖2𝑘𝑘 ∈ 𝑛𝑛 2𝑘𝑘 such that every 
𝑖𝑖𝑗𝑗 , 𝑖𝑖𝑗𝑗+1  occurs in the sequence an even number of times

• At most 𝑘𝑘 + 1 distinct labels in the sequences

𝑘𝑘 = 2: 𝑖𝑖1, … , 𝑖𝑖4 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, 𝑏𝑏 𝑎𝑎 𝑏𝑏 𝑐𝑐    𝑖𝑖1, … , 𝑖𝑖4 = 𝑎𝑎, 𝑏𝑏,𝑎𝑎, 𝑐𝑐
𝑎𝑎

𝑏𝑏 𝑐𝑐



Example
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Suppose 𝑀𝑀 is an 𝑛𝑛 × 𝑛𝑛 symmetric matrix with i.i.d. Rademacher entries and zeros along the diagonal

𝑖𝑖1
𝑖𝑖2

𝑖𝑖3
𝑖𝑖4

𝑖𝑖5

𝑖𝑖6 𝑀𝑀𝑖𝑖1,𝑖𝑖2𝑀𝑀𝑖𝑖2,𝑖𝑖3𝑀𝑀𝑖𝑖3,𝑖𝑖4𝑀𝑀𝑖𝑖4,𝑖𝑖5𝑀𝑀𝑖𝑖5,𝑖𝑖6𝑀𝑀𝑖𝑖6,𝑖𝑖1𝔼𝔼 = 1

iff every 𝑖𝑖𝑗𝑗 , 𝑖𝑖𝑗𝑗+1  occurs even number of times

Combinatorial problem: tr 𝑀𝑀2𝑘𝑘  equals to the number of sequences 𝑖𝑖1, … , 𝑖𝑖2𝑘𝑘 ∈ 𝑛𝑛 2𝑘𝑘 such that every 
𝑖𝑖𝑗𝑗 , 𝑖𝑖𝑗𝑗+1  occurs in the sequence an even number of times

• At most 𝑘𝑘 + 1 distinct labels in the sequences

• tr 𝑀𝑀2𝑘𝑘  ≤ 𝑛𝑛𝑘𝑘+1 ⋅ 𝑘𝑘 + 1 2𝑘𝑘

• 𝑀𝑀 ≤ 𝑛𝑛 log𝑛𝑛 (by taking 𝑘𝑘 ∼ log𝑛𝑛)

Furedi-Komlos: 𝑀𝑀 ≃ 𝑛𝑛
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• Problem setup and examples

• Some easy algorithms

• Heterogeneous setting

• Main result

• The trace method

• The blueprint of the algorithm

• Proof: the signal part

• Proof: the noise part

• Generalizations



The blueprint
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• The algorithm takes a random order-5 tensor 𝑢𝑢 (with i.i.d. 𝒩𝒩 0,1  entries)

• The hope is that 𝑢𝑢 has non-trivial correlation with some 𝑥𝑥 in the orbit of one of 𝑥𝑥1, … , 𝑥𝑥𝐾𝐾

• Compute the following tensor network:

𝒯𝒯
𝒯𝒯𝒯𝒯

𝒯𝒯

𝒯𝒯

𝒯𝒯 𝒯𝒯
𝒯𝒯

𝒯𝒯𝑢𝑢

𝑎𝑎

𝑏𝑏

𝑐𝑐

𝑑𝑑

Grouping

𝑎𝑎, 𝑏𝑏 , 𝑐𝑐,𝑑𝑑

�𝑀𝑀 𝒯𝒯,𝑢𝑢 ∈ ℝ𝑛𝑛2×𝑛𝑛2

We want to show that if 𝑢𝑢 = 𝑥𝑥⊗5, then 
�𝑀𝑀 𝒯𝒯,𝑢𝑢 ≈ 𝑥𝑥⊗2 𝑥𝑥⊗2 ⊤

Q: Why do we need a random tensor 𝑢𝑢?

A: Symmetry-breaking



The blueprint
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• Use a simple tensor 𝑆𝑆 ∈ ℝ𝑛𝑛×8
 to correct the tensor network:

𝒯𝒯
𝒯𝒯𝒯𝒯

𝒯𝒯

𝒯𝒯

𝒯𝒯 𝒯𝒯
𝒯𝒯

𝒯𝒯𝑢𝑢 𝑆𝑆
Grouping

𝑀𝑀 𝒯𝒯,𝑢𝑢 ∈ ℝ𝑛𝑛2×𝑛𝑛2



Main technical step
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Technical theorem. 

There is a matrix 𝑀𝑀 𝒯𝒯,𝑢𝑢 ∈ ℝ𝑛𝑛2×𝑛𝑛2  (computable in poly-time from 𝒯𝒯 and 𝑢𝑢) with the following 
guarantee. 
Let 𝑣𝑣 ∈ ℝ𝑛𝑛2  be the leading eigenvector of ⁄𝑀𝑀 𝒯𝒯,𝑢𝑢 + 𝑀𝑀 𝒯𝒯,𝑢𝑢 ⊤ 2. 
Let 𝑉𝑉 = mat 𝑣𝑣 ∈ ℝ𝑛𝑛×𝑛𝑛 and let 𝜏𝜏 ∈ ℝ𝑛𝑛 be the top eigenvector of ⁄𝑉𝑉 + 𝑉𝑉⊤ 2. 

With high probability over 𝑥𝑥𝑘𝑘 , for any 𝑘𝑘 ∈ 𝐾𝐾 , we have 𝜏𝜏, 𝑥𝑥𝑘𝑘 2 ≥ 0.99 with probability 
⁄1 poly 𝑛𝑛 .



Main technical step
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Technical theorem. 

There is a matrix 𝑀𝑀 𝒯𝒯,𝑢𝑢 ∈ ℝ𝑛𝑛2×𝑛𝑛2  (computable in poly-time from 𝒯𝒯 and 𝑢𝑢) with the following 
guarantee. Let 𝑣𝑣 ∈ ℝ𝑛𝑛2  be the leading eigenvector of ⁄𝑀𝑀 𝒯𝒯,𝑢𝑢 + 𝑀𝑀 𝒯𝒯,𝑢𝑢 ⊤ 2. Let 𝑉𝑉 =
mat 𝑣𝑣 ∈ ℝ𝑛𝑛×𝑛𝑛 and let 𝜏𝜏 ∈ ℝ𝑛𝑛 be the top eigenvector of ⁄𝑉𝑉 + 𝑉𝑉⊤ 2. With high probability over 

𝑥𝑥𝑘𝑘 , for any 𝑘𝑘 ∈ 𝐾𝐾 , we have 𝜏𝜏, 𝑥𝑥𝑘𝑘 2 ≥ 0.99 with probability ⁄1 poly 𝑛𝑛 .

Proof of the main theorem:

• Sample 𝑢𝑢1, … ,𝑢𝑢𝐿𝐿 and use the technical theorem to obtain 𝜏𝜏1, … , 𝜏𝜏𝐿𝐿

• For any 𝑘𝑘, the overall failure probability is ≤ 1 − ⁄1 poly 𝑛𝑛 𝐿𝐿 = exp − ⁄𝐿𝐿 poly 𝑛𝑛

• By union bound over all 𝑘𝑘 ∈ 𝐾𝐾 , the total failure probability is ≤ 𝐾𝐾 exp − ⁄𝐿𝐿 poly 𝑛𝑛 = 𝑜𝑜 1

∎



Fourier transform in tensor network
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We first define Δ to be the Fourier transform unitary matrix that transforms �𝑥𝑥 to 𝑥𝑥

You can check that Δ⊤Δ 𝑖𝑖𝑖𝑖 = 𝟏𝟏𝑖𝑖=−𝑗𝑗

�𝑥𝑥 𝑥𝑥

=
�𝑇𝑇 𝑇𝑇

=

�𝑇𝑇

�𝑇𝑇

�𝑇𝑇

�𝑇𝑇

= 𝑖𝑖

−𝑖𝑖

�𝑥𝑥𝑗𝑗 ≔
1
2
𝑥𝑥𝑗𝑗 + 𝐢𝐢𝑥𝑥−𝑗𝑗

, �𝑥𝑥−𝑗𝑗

≔
1
2
𝑥𝑥𝑗𝑗 − 𝐢𝐢𝑥𝑥−𝑗𝑗



Corrected tensor network
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�𝒯𝒯
�𝒯𝒯�𝒯𝒯

�𝒯𝒯

�𝒯𝒯

�𝒯𝒯 �𝒯𝒯

�𝒯𝒯

�𝒯𝒯�𝑢𝑢 𝑆̂𝑆

𝑀𝑀 𝒯𝒯,𝑢𝑢 = Δ⊗ Δ �𝑀𝑀 𝒯𝒯,𝑢𝑢 Δ⊗ Δ ⊤
�ℳ 𝒯𝒯,𝑢𝑢

𝑆̂𝑆𝑇𝑇 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎



Today’s plan
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• Problem setup and examples

• Some easy algorithms

• Heterogeneous setting

• Main result: a spectral algorithm for heterogeneous MRA

• The trace method

• The blueprint of the algorithm

• Proof: the signal part

• Proof: the noise part

• Generalizations



Correcting the signal
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Goal: If we correctly guess 𝑢𝑢 = 𝑥𝑥𝑘𝑘 ⊗5
, then 𝑀𝑀 𝒯𝒯,𝑢𝑢 ≈ 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 ⊤ ≡ 𝑋𝑋𝑘𝑘

• Wlog, we can write 𝑢𝑢 = 𝛼𝛼 𝑥𝑥1 ⊗5 + �𝑢𝑢, where �𝑢𝑢 ⊥ 𝑥𝑥1 ⊗5 (noise)

• Let 𝑇𝑇1 ≔ 𝔼𝔼𝑔𝑔 𝑔𝑔 ⋅ 𝑥𝑥1 ⊗3  denote the 3rd moment of 𝑥𝑥1. Then

�𝑇𝑇1 𝑗𝑗1𝑗𝑗2𝑗𝑗3
= 𝟏𝟏𝑗𝑗1+𝑗𝑗2+𝑗𝑗3=0 �𝑥𝑥𝑗𝑗1

1 �𝑥𝑥𝑗𝑗2
1 �𝑥𝑥𝑗𝑗3

1

We want to match 𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5  to 𝑋𝑋1:

• �𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5
𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐 = 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ �𝑥𝑥𝑎𝑎1 �𝑥𝑥𝑏𝑏1 �𝑥𝑥𝑐𝑐1 �𝑥𝑥𝑑𝑑1, where

𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≔ �
𝑖𝑖1,…,𝑖𝑖9

�
𝑗𝑗1,…,𝑗𝑗5

𝟏𝟏𝑎𝑎+𝑖𝑖2=𝑖𝑖1 ⋯𝟏𝟏𝑖𝑖1+𝑗𝑗5=𝑖𝑖9 �𝑥𝑥𝑖𝑖1
1 2 ⋯ �𝑥𝑥𝑖𝑖9

1 2 �𝑥𝑥𝑗𝑗1
1 2 ⋯ �𝑥𝑥𝑗𝑗5

1 2

Pure signal
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𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≔ �
𝑖𝑖1,…,𝑖𝑖9

�
𝑗𝑗1,…,𝑗𝑗5

𝟏𝟏𝑎𝑎+𝑖𝑖2=𝑖𝑖1 ⋯𝟏𝟏𝑖𝑖1+𝑗𝑗5=𝑖𝑖9 �𝑥𝑥𝑖𝑖1
1 2 ⋯ �𝑥𝑥𝑖𝑖9

1 2 �𝑥𝑥𝑗𝑗1
1 2 ⋯ �𝑥𝑥𝑗𝑗5

1 2

�𝑀𝑀 𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐 ≔ 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ �𝑥𝑥𝑎𝑎1 �𝑥𝑥𝑏𝑏1 �𝑥𝑥𝑐𝑐1 �𝑥𝑥𝑑𝑑1

• Define

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≔ �
0 if 𝑎𝑎 = −𝑏𝑏 or 𝑐𝑐 = −𝑑𝑑

1
𝔼𝔼𝑥𝑥1 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 otherwise

• We will show that 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is concentrated around its mean (which is independent of 𝑥𝑥1)

Proposition. 

For 𝑎𝑎 ≠ −𝑏𝑏 and 𝑐𝑐 ≠ −𝑑𝑑, we have 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 1 = 𝒪𝒪 𝑛𝑛−0.1  with overwhelming probability 
over 𝑥𝑥1. Therefore, 𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 − 𝑋𝑋1 = 𝑜𝑜 1 .



Linear constraints on the indices
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• 𝑖𝑖1 − 𝑖𝑖2 = 𝑎𝑎
• 𝑖𝑖1 + 𝑗𝑗5 − 𝑖𝑖9 = 0
• 𝑖𝑖9 + 𝑗𝑗4 − 𝑖𝑖8 = 0
• 𝑖𝑖7 − 𝑖𝑖8 = 𝑑𝑑
• 𝑖𝑖7 + 𝑗𝑗3 − 𝑖𝑖6 = 0
• 𝑖𝑖5 − 𝑖𝑖6 = 𝑏𝑏
• 𝑖𝑖5 + 𝑗𝑗2 − 𝑖𝑖4 = 0
• 𝑖𝑖3 − 𝑖𝑖4 = 𝑐𝑐
• 𝑖𝑖3 + 𝑗𝑗1 − 𝑖𝑖2 = 0

• 𝑖𝑖1 = 𝑖𝑖9 − 𝑗𝑗5
• 𝑖𝑖2 = 𝑖𝑖9 − 𝑗𝑗5 − 𝑎𝑎
• 𝑖𝑖3 = 𝑖𝑖9 − 𝑗𝑗5 − 𝑎𝑎 − 𝑗𝑗1
• 𝑖𝑖4 = 𝑖𝑖9 − 𝑗𝑗5 − 𝑎𝑎 − 𝑗𝑗1 − 𝑐𝑐
• 𝑖𝑖5 = 𝑖𝑖9 + 𝑗𝑗4 + 𝑑𝑑 + 𝑗𝑗3 + 𝑏𝑏
• 𝑖𝑖6 = 𝑖𝑖9 + 𝑗𝑗4 + 𝑑𝑑 + 𝑗𝑗3
• 𝑖𝑖7 = 𝑖𝑖9 + 𝑗𝑗4 + 𝑑𝑑
• 𝑖𝑖8 = 𝑖𝑖9 + 𝑗𝑗4
• 𝑗𝑗2 = −𝑗𝑗5 − 𝑎𝑎 − 𝑗𝑗1 − 𝑐𝑐 − 𝑗𝑗4 − 𝑑𝑑 − 𝑗𝑗3 − 𝑏𝑏

For any fixed 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑 , there are 5 “free” indices (𝑖𝑖9, 𝑗𝑗1, 𝑗𝑗3, 𝑗𝑗4, 𝑗𝑗5) 

• Thus, the number of solutions is upper-bounded by 𝑛𝑛5

• We can also prove that the number of valid solution is lower-bounded by 𝑐𝑐𝑛𝑛5 for some small constant 𝑐𝑐, 
by a careful counting argument



Moments of random vector
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Lemma.   Let 𝑥𝑥1 ∼ 𝒩𝒩 0, ⁄𝐼𝐼 𝑛𝑛 . Then, we have

• 𝔼𝔼𝑥𝑥1 �𝑥𝑥𝑖𝑖1
2𝑘𝑘 = 𝑘𝑘!𝑛𝑛−𝑘𝑘 

• If 𝑘𝑘1 ≠ 𝑘𝑘2, then 𝔼𝔼𝑥𝑥1 �𝑥𝑥𝑖𝑖1
𝑘𝑘1 �𝑥𝑥−𝑖𝑖1

𝑘𝑘2 = 0

• If 𝑖𝑖 ≠ ±𝑗𝑗, then �𝑥𝑥𝑖𝑖1 and �𝑥𝑥𝑗𝑗1 are independent

Proof. 

• �𝑥𝑥𝑖𝑖1 ∼ 𝒩𝒩 0, ⁄𝐼𝐼 2𝑛𝑛 + 𝐢𝐢𝒩𝒩 0, ⁄𝐼𝐼 2𝑛𝑛  and �𝑥𝑥−𝑖𝑖1 = �𝑥𝑥𝑖𝑖1
∗

• �𝑥𝑥𝑖𝑖1
2 ∼ 1

2𝑛𝑛
𝜒𝜒2

𝔼𝔼𝑥𝑥1 �𝑥𝑥𝑖𝑖1
1 2 ⋯ �𝑥𝑥𝑖𝑖9

1 2 �𝑥𝑥𝑗𝑗1
1 2 ⋯ �𝑥𝑥𝑗𝑗5

1 2

= Θ 𝑛𝑛−14
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• Expectation:

𝔼𝔼𝑥𝑥1 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = �
𝑖𝑖1,…,𝑖𝑖9

�
𝑗𝑗1,…,𝑗𝑗5

𝟏𝟏𝑎𝑎+𝑖𝑖2=𝑖𝑖1 ⋯𝟏𝟏𝑖𝑖1+𝑗𝑗5=𝑖𝑖9 𝔼𝔼𝑥𝑥1 �𝑥𝑥𝑖𝑖1
1 2 ⋯ �𝑥𝑥𝑖𝑖9

1 2 �𝑥𝑥𝑗𝑗1
1 2 ⋯ �𝑥𝑥𝑗𝑗5

1 2

= �
𝑖𝑖1,…,𝑖𝑖9

�
𝑗𝑗1,…,𝑗𝑗5

𝟏𝟏𝑎𝑎+𝑖𝑖2=𝑖𝑖1 ⋯𝟏𝟏𝑖𝑖1+𝑗𝑗5=𝑖𝑖9 Θ 𝑛𝑛−14

= Θ 𝑛𝑛5 ⋅ 𝑛𝑛−14 = Θ 𝑛𝑛−9

• Variance:

Var 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = Var �
𝑡𝑡

𝑍𝑍𝑡𝑡 = �
𝑡𝑡

Var 𝑍𝑍𝑡𝑡 + �
𝑡𝑡≠𝑡𝑡′

Cov 𝑍𝑍𝑡𝑡 ,𝑍𝑍𝑡𝑡′

≤ Θ 𝑛𝑛5 ⋅ 𝒪𝒪 𝑛𝑛−28 + 𝒪𝒪 𝑛𝑛9 ⋅ 𝒪𝒪 𝑛𝑛−28 = 𝒪𝒪 𝑛𝑛−19

• By Chebyshev’s inequality, they imply that 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝔼𝔼 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ 𝑛𝑛−9.1 with probability 1 − 1/poly 𝑛𝑛

• Note that 𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 is a degree-14 polynomial of Gaussian variables. Gaussian hypercontractivity can boost the 
probability to 1 − exp −poly 𝑛𝑛

𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 only depends on 𝑛𝑛
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Proposition. 

For 𝑎𝑎 ≠ −𝑏𝑏 and 𝑐𝑐 ≠ −𝑑𝑑, we have 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 1 = 𝒪𝒪 𝑛𝑛−0.1  with overwhelming probability 
over 𝑥𝑥1. Therefore, 𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 − 𝑋𝑋1 = 𝑜𝑜 1 .

• We have proved that for 𝑎𝑎 ≠ −𝑏𝑏 and 𝑐𝑐 ≠ −𝑑𝑑, 

�𝑀𝑀 𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐 = 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ⋅ �𝑥𝑥𝑎𝑎1 �𝑥𝑥𝑏𝑏1 �𝑥𝑥𝑐𝑐1 �𝑥𝑥𝑑𝑑1 = 1 ± 𝑛𝑛−0.1 �𝑥𝑥𝑎𝑎1 �𝑥𝑥𝑏𝑏1 �𝑥𝑥𝑐𝑐1 �𝑥𝑥𝑑𝑑1

• Thus, we have

𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 − 𝑋𝑋1 = 𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 − 𝑥𝑥1 ⊗ 𝑥𝑥1 𝑥𝑥1 ⊗ 𝑥𝑥1 ⊤

= �𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 − �𝑥𝑥1 ⊗ �𝑥𝑥1 �𝑥𝑥1 ⊗ �𝑥𝑥1 ⊤

≤ �𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 − �𝑥𝑥1 ⊗ �𝑥𝑥1 �𝑥𝑥1 ⊗ �𝑥𝑥1 ⊤
𝐹𝐹

≤ 𝑛𝑛4 ⋅ 𝑛𝑛−0.1 ⋅ 𝑛𝑛−2 2 + 2𝑛𝑛3 ⋅ 𝑛𝑛−2 2

= 𝑜𝑜 1

• The proposition is then proved

∎
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If correctly guess 𝑢𝑢 = 𝑥𝑥𝑘𝑘, then 

𝑀𝑀 ≈ 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 ⊤

𝑢𝑢 = 𝛼𝛼𝑥𝑥1 + �𝑢𝑢,  �𝑢𝑢 ⊥ 𝑥𝑥1

𝑀𝑀 𝒯𝒯,𝑢𝑢 = 𝛼𝛼𝛼𝛼 𝑇𝑇1, 𝑥𝑥1 ⊗5 + 𝛼𝛼 𝑀𝑀 𝑇𝑇, 𝑥𝑥1 ⊗5 − 𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 + 𝑀𝑀 𝒯𝒯,𝑢𝑢 −𝑀𝑀 𝑇𝑇,𝑢𝑢 + 𝑀𝑀 𝑇𝑇, �𝑢𝑢

Road
map
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If correctly guess 𝑢𝑢 = 𝑥𝑥𝑘𝑘, then 𝑀𝑀
≈ 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 ⊤

𝑢𝑢 = 𝛼𝛼𝑥𝑥1 + �𝑢𝑢,  �𝑢𝑢 ⊥ 𝑥𝑥1

𝑀𝑀 𝒯𝒯,𝑢𝑢 = 𝛼𝛼𝛼𝛼 𝑇𝑇1, 𝑥𝑥1 ⊗5 + 𝛼𝛼 𝑀𝑀 𝑇𝑇, 𝑥𝑥1 ⊗5 − 𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 + 𝑀𝑀 𝒯𝒯,𝑢𝑢 −𝑀𝑀 𝑇𝑇,𝑢𝑢 + 𝑀𝑀 𝑇𝑇, �𝑢𝑢

= 1 ± 𝑜𝑜 1 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 ⊤

Road
map



September 17, 2025 39

If correctly guess 𝑢𝑢 = 𝑥𝑥𝑘𝑘, then 𝑀𝑀
≈ 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 ⊤

𝑢𝑢 = 𝛼𝛼𝑥𝑥1 + �𝑢𝑢,  �𝑢𝑢 ⊥ 𝑥𝑥1

𝑀𝑀 𝒯𝒯,𝑢𝑢 = 𝛼𝛼𝛼𝛼 𝑇𝑇1, 𝑥𝑥1 ⊗5 + 𝛼𝛼 𝑀𝑀 𝑇𝑇, 𝑥𝑥1 ⊗5 − 𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 + 𝑀𝑀 𝒯𝒯,𝑢𝑢 −𝑀𝑀 𝑇𝑇,𝑢𝑢 + 𝑀𝑀 𝑇𝑇, �𝑢𝑢

𝑀𝑀 𝑇𝑇, 𝑥𝑥1 ⊗5 − 𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 = 𝑜𝑜 1

𝑀𝑀 𝒯𝒯,𝑢𝑢 − 𝑀𝑀 𝑇𝑇,𝑢𝑢 = 𝑜𝑜 1

Road
map
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If correctly guess 𝑢𝑢 = 𝑥𝑥𝑘𝑘, then 

𝑀𝑀 ≈ 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 ⊤

𝑢𝑢 = 𝛼𝛼𝑥𝑥1 + �𝑢𝑢,  �𝑢𝑢 ⊥ 𝑥𝑥1

𝑀𝑀 𝒯𝒯,𝑢𝑢 = 𝛼𝛼𝛼𝛼 𝑇𝑇1, 𝑥𝑥1 ⊗5 + 𝛼𝛼 𝑀𝑀 𝑇𝑇, 𝑥𝑥1 ⊗5 − 𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 + 𝑀𝑀 𝒯𝒯,𝑢𝑢 −𝑀𝑀 𝑇𝑇,𝑢𝑢 + 𝑀𝑀 𝑇𝑇, �𝑢𝑢

Non-negligible!

Road
map

• Random tensor contraction ( �𝑢𝑢 ∼ 𝒩𝒩 0, Σ )

• The trace method to upper bound �𝑊𝑊

• Combinatorial problem of counting labels

𝑀𝑀 𝑇𝑇, �𝑢𝑢 = log𝑛𝑛

�𝑊𝑊 =
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If correctly guess 𝑢𝑢 = 𝑥𝑥𝑘𝑘, then 

𝑀𝑀 ≈ 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 ⊤

𝑢𝑢 = 𝛼𝛼𝑥𝑥1 + �𝑢𝑢,  �𝑢𝑢 ⊥ 𝑥𝑥1

𝑀𝑀 𝒯𝒯,𝑢𝑢 = 𝛼𝛼𝛼𝛼 𝑇𝑇1, 𝑥𝑥1 ⊗5 + 𝛼𝛼 𝑀𝑀 𝑇𝑇, 𝑥𝑥1 ⊗5 − 𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 + 𝑀𝑀 𝒯𝒯,𝑢𝑢 −𝑀𝑀 𝑇𝑇,𝑢𝑢 + 𝑀𝑀 𝑇𝑇, �𝑢𝑢

Road
map

𝑥𝑥1 can be recovered from the top eigenvector of 𝑀𝑀 𝒯𝒯,𝑢𝑢

As long as we sample sufficiently many 𝑢𝑢’s, we can “hit” all 𝑥𝑥𝑘𝑘 w.h.p.  



Today’s plan
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• Problem setup and examples

• Some easy algorithms

• Heterogeneous setting

• Main result: a spectral algorithm for heterogeneous MRA

• The trace method

• The blueprint of the algorithm

• Proof: the signal part

• Proof: the noise part

• Generalizations



Towards proving the technical theorem
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Recall that 𝑢𝑢 = 𝛼𝛼 𝑥𝑥1 ⊗5 + �𝑢𝑢, and our final goal is to analyze

𝑀𝑀 𝒯𝒯,𝑢𝑢 = 𝛼𝛼𝛼𝛼 𝑇𝑇1, 𝑥𝑥1 ⊗5 + 𝛼𝛼 𝑀𝑀 𝑇𝑇, 𝑥𝑥1 ⊗5 − 𝑀𝑀 𝑇𝑇1, 𝑥𝑥1 ⊗5 + 𝑀𝑀 𝑇𝑇, �𝑢𝑢 + 𝑀𝑀 𝒯𝒯,𝑢𝑢 −𝑀𝑀 𝑇𝑇,𝑢𝑢

Key Proposition. 

There is an event ℰ depending only on 𝑥𝑥𝑘𝑘  that happens with high probability over the 
randomness of 𝑥𝑥𝑘𝑘 . Conditioned on ℰ, we have 𝑀𝑀 𝑇𝑇, �𝑢𝑢 = 𝒪𝒪 log𝑛𝑛  with high probability 
over the randomness of �𝑢𝑢.

≈ 𝑋𝑋1 heterogeneous signal term error termnoise term
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𝑀𝑀 𝑇𝑇, �𝑢𝑢 = 𝐼𝐼𝑑𝑑2 ⊗ 𝐼𝐼𝑑𝑑2 ⊗ �𝑢𝑢 𝑊𝑊

�𝒯𝒯
�𝒯𝒯�𝒯𝒯

�𝒯𝒯

�𝒯𝒯

�𝒯𝒯 �𝒯𝒯

�𝒯𝒯

�𝒯𝒯 𝑆̂𝑆𝑊𝑊 ∈ ℝ𝑛𝑛2×𝑛𝑛2×𝑛𝑛5 ≔



Interlude: random tensor contraction
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Theorem (Ma-Shi-Steurer, 2016).

Let 𝑊𝑊 ∈ ℝ𝑝𝑝 × ℝ𝑞𝑞 × ℝ𝑟𝑟  be an order-3 tensor. Let �𝑢𝑢 ∼ 𝒩𝒩 0, Σ  with 𝑟𝑟 × 𝑟𝑟 covariance matrix 
satisfying 0 ≼ Σ ≼ 𝐼𝐼. Define

𝐿𝐿 ≔ max 𝑊𝑊1 , 23 , 𝑊𝑊13 , 2  .

Then for any 𝑡𝑡 ≥ 0,

Pr
�𝑢𝑢

𝐼𝐼𝑝𝑝 ⊗ 𝐼𝐼𝑞𝑞 ⊗ �𝑢𝑢 𝑊𝑊 ≥ 𝑡𝑡 ≤ 4 𝑝𝑝 + 𝑞𝑞 𝑒𝑒−
𝑡𝑡2
2𝐿𝐿2

• 𝐿𝐿 serves as the Lipschitz parameter



Lipschitz property
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• Define 𝐴𝐴 𝑢𝑢 ≔ 𝐼𝐼𝑝𝑝 ⊗ 𝐼𝐼𝑞𝑞 ⊗ 𝑢𝑢 𝑊𝑊 = ∑𝑘𝑘∈ 𝑟𝑟 𝑢𝑢𝑘𝑘𝑊𝑊𝑘𝑘

• For any 𝑢𝑢, 𝑣𝑣 ∈ ℝ𝑟𝑟, we have

𝐴𝐴 𝑢𝑢 − 𝐴𝐴 𝑣𝑣 = �
𝑘𝑘∈ 𝑟𝑟

𝑢𝑢𝑘𝑘 − 𝑣𝑣𝑘𝑘 𝑊𝑊𝑘𝑘

= sup
𝑥𝑥∈ℝ𝑝𝑝: 𝑥𝑥 =1,
𝑦𝑦∈ℝ𝑞𝑞: 𝑦𝑦 =1

�
𝑘𝑘∈ 𝑟𝑟

𝑢𝑢𝑘𝑘 − 𝑣𝑣𝑘𝑘 𝑊𝑊𝑘𝑘, 𝑥𝑥𝑦𝑦⊤

≤ sup
𝑥𝑥∈ℝ𝑝𝑝: 𝑥𝑥 =1,
𝑦𝑦∈ℝ𝑞𝑞: 𝑦𝑦 =1

𝑢𝑢 − 𝑣𝑣 ⋅ �
𝑘𝑘∈ 𝑟𝑟

𝑊𝑊𝑘𝑘 , 𝑥𝑥𝑦𝑦⊤ 2
⁄1 2
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sup
𝑥𝑥∈ℝ𝑝𝑝: 𝑥𝑥 =1,
𝑦𝑦∈ℝ𝑞𝑞: 𝑦𝑦 =1

�
𝑘𝑘∈ 𝑟𝑟

𝑊𝑊𝑘𝑘 , 𝑥𝑥𝑦𝑦⊤ 2
⁄1 2

= sup
𝑥𝑥 =1

sup
𝑦𝑦 =1

�
𝑘𝑘∈ 𝑟𝑟

(𝑥𝑥⊤𝑊𝑊𝑘𝑘𝑦𝑦)2
⁄1 2

≤ sup
𝑥𝑥 =1

�
𝑘𝑘∈ 𝑟𝑟

sup
𝑦𝑦 =1

𝑥𝑥⊤𝑊𝑊𝑘𝑘𝑦𝑦 2
⁄1 2

= sup
𝑥𝑥 =1

�
𝑘𝑘∈ 𝑟𝑟

𝑊𝑊𝑘𝑘
⊤𝑥𝑥 2

⁄1 2

= 𝑊𝑊1 ,{23}

sup
𝑥𝑥∈ℝ𝑝𝑝: 𝑥𝑥 =1,
𝑦𝑦∈ℝ𝑞𝑞: 𝑦𝑦 =1

�
𝑘𝑘∈ 𝑟𝑟

𝑊𝑊𝑘𝑘 , 𝑥𝑥𝑦𝑦⊤ 2
⁄1 2

= sup
𝑦𝑦 =1

sup
𝑥𝑥 =1

�
𝑘𝑘∈ 𝑟𝑟

(𝑥𝑥⊤𝑊𝑊𝑘𝑘𝑦𝑦)2
⁄1 2

≤ sup
𝑦𝑦 =1

�
𝑘𝑘∈ 𝑟𝑟

sup
𝑥𝑥 =1

𝑥𝑥⊤𝑊𝑊𝑘𝑘𝑦𝑦 2
⁄1 2

= sup
𝑦𝑦 =1

�
𝑘𝑘∈ 𝑟𝑟

𝑊𝑊𝑘𝑘𝑦𝑦 2
⁄1 2

= 𝑊𝑊13 ,{2}
𝐴𝐴 𝑢𝑢 − 𝐴𝐴(𝑣𝑣) ≤ 𝐿𝐿 ⋅ 𝑢𝑢 − 𝑣𝑣

𝑢𝑢 ↦ 𝐴𝐴 𝑢𝑢  is 𝐿𝐿-Lipschitz



Back to the proof of Key Proposition
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• Applying that theorem to 𝑀𝑀 𝑇𝑇, �𝑢𝑢 = 𝐼𝐼𝑛𝑛2 ⊗ 𝐼𝐼𝑛𝑛2 ⊗ �𝑢𝑢 𝑊𝑊, we have

Pr
�𝑢𝑢

𝑀𝑀 𝑇𝑇, �𝑢𝑢 ≥ 𝑡𝑡𝑡𝑡 ≤ 𝑛𝑛2𝑒𝑒− ⁄𝑡𝑡2 2  ,
where 

𝐿𝐿 ≔ max 𝑊𝑊𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐𝑗𝑗1…𝑗𝑗5 , 𝑊𝑊𝑎𝑎𝑎𝑎𝑗𝑗1…𝑗𝑗5,𝑐𝑐𝑐𝑐

• By symmetry, we just consider the first one, and define �𝑊𝑊 ∈ ℝ𝑛𝑛2×𝑛𝑛7:

�𝑊𝑊𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐𝑗𝑗1…𝑗𝑗5 ≔ 𝑊𝑊𝑎𝑎𝑎𝑎,𝑐𝑐𝑐𝑐,𝑗𝑗1…𝑗𝑗5

• We need to upper bound �𝑊𝑊



Recap: the trace method
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Theorem.

For any real-valued random matrix 𝑌𝑌, for any integer 𝑞𝑞 ≥ 1 and any 𝜖𝜖 > 0,

Pr 𝑌𝑌 >
𝔼𝔼 tr 𝑌𝑌𝑌𝑌⊤ 𝑞𝑞

𝜖𝜖

1
2𝑞𝑞

≤ 𝜖𝜖

• tr �𝑊𝑊 �𝑊𝑊⊤ 𝑞𝑞
 can be represented as a huge TN 𝒢𝒢𝑞𝑞 by connecting 2𝑞𝑞 copies of the TN for �𝑊𝑊 in a ring

• Computing 𝔼𝔼 tr �𝑊𝑊 �𝑊𝑊⊤ 𝑞𝑞
 is reduced to a combinatorial problem of labeling 𝒢𝒢𝑞𝑞 
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𝑆̂𝑆 is not shown

Tensor network for the trace method

tr �𝑊𝑊 �𝑊𝑊⊤ 𝑞𝑞



Labeling the TN graph
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A labeling ℒ of 𝒢𝒢𝑞𝑞 is to assign every edge a pair of indices 𝑖𝑖𝑒𝑒 ,−𝑖𝑖𝑒𝑒  for any 𝑖𝑖𝑒𝑒 ∈ ⁄𝑛𝑛 2 , and assign every 
vertex 𝑣𝑣 (i.e., �𝑇𝑇 in the graph) an index 𝑘𝑘𝑣𝑣 ∈ 𝐾𝐾 .

𝔼𝔼 tr �𝑊𝑊 �𝑊𝑊⊤ 𝑞𝑞 = 𝔼𝔼 �
ℒ

𝑆𝑆ℒ�
𝑣𝑣

ℒ 𝑣𝑣

where 

𝑆𝑆ℒ ≔�
𝑙𝑙=1

𝑞𝑞

𝑆𝑆𝑎𝑎 𝑙𝑙 𝑏𝑏 𝑙𝑙 𝑐𝑐 𝑙𝑙 𝑑𝑑 𝑙𝑙 ⋅ 𝑆𝑆 −𝑎𝑎 𝑙𝑙+1 −𝑏𝑏 𝑙𝑙+1 −𝑐𝑐 𝑙𝑙 −𝑑𝑑 𝑙𝑙

𝑣𝑣
𝑖𝑖1−𝑖𝑖1

𝑖𝑖2

−𝑖𝑖2

𝑖𝑖3 −𝑖𝑖3
ℒ 𝑣𝑣 ≔ 𝟏𝟏𝑖𝑖1+𝑖𝑖2+𝑖𝑖3=0𝑥𝑥𝑖𝑖1

𝑘𝑘𝑣𝑣𝑥𝑥𝑖𝑖2
𝑘𝑘𝑣𝑣𝑥𝑥𝑖𝑖3

𝑘𝑘𝑣𝑣



Labeling the TN graph
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𝔼𝔼 �
ℒ

𝑆𝑆ℒ�
𝑣𝑣

ℒ 𝑣𝑣 = �
ℒ

𝑆𝑆ℒ𝔼𝔼 �
𝑣𝑣

ℒ 𝑣𝑣

• Let 𝑐𝑐 ℒ  be the number of repeated labels:

𝑐𝑐 ℒ ≔ �
𝑖𝑖∈ ⁄𝑝𝑝 2

max 0, #edges with label ± 𝑖𝑖 − 1

• The vertices with the same label 𝑘𝑘𝑣𝑣 form a region. Let 𝑟𝑟 ℒ  be the number of regions:

𝑟𝑟 ℒ ≔ #distinct 𝑘𝑘𝑣𝑣 values

• A labeling ℒ is valid if:

1)  𝑖𝑖1 + 𝑖𝑖2 + 𝑖𝑖3 = 0 at every vertex

2)  𝑎𝑎 𝑙𝑙 ≠ −𝑏𝑏 𝑙𝑙  and 𝑐𝑐 𝑙𝑙 ≠ −𝑑𝑑 𝑙𝑙  for every layer 𝑙𝑙

3)  Each region has as many incident 𝑖𝑖 labels as incident – 𝑖𝑖 labels

ℒ 𝑣𝑣 ≠ 0
𝑆𝑆ℒ ≠ 0

𝔼𝔼[… ] ≠ 0



Labeling the TN graph
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Claim.   For any valid labeling ℒ with 𝑟𝑟 ℒ > 1, we have 𝑐𝑐 ℒ ≥ ⁄𝑟𝑟 ℒ 2.

Proof.

• Since the number of regions > 1, and each region has an even number of cut edges (otherwise condition 
(3) is violated)

• So, the total number of cut edges is ≥ 𝑟𝑟 ℒ

• Since every cut edge with label 𝑖𝑖,−𝑖𝑖  can be matched to another edge with label −𝑖𝑖, 𝑖𝑖 , the number of 
repeated edges is at least ⁄𝑟𝑟 ℒ 2

𝑖𝑖

−𝑖𝑖

−𝑖𝑖

𝑖𝑖
𝑗𝑗

−𝑗𝑗

−𝑗𝑗𝑗𝑗

∎



Counting the valid labelings
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Lemma.   The number of valid edge-labelings with exactly 𝑐𝑐 ℒ  repeated labels is at most

𝑞𝑞𝒪𝒪 𝑐𝑐 ℒ 𝑛𝑛1+9𝑞𝑞− ⁄𝑐𝑐 ℒ 25

Lemma.   For a valid edge-labeling with 𝑐𝑐 repeated labels, the number of valid vertex-labelings is at 
most

𝑐𝑐 ℒ 𝒪𝒪 𝑞𝑞 exp 𝑐𝑐 ℒ

Proof.

• 𝑟𝑟 ℒ ≤ 2𝑐𝑐 ℒ + 1

• #vertices = 18𝑞𝑞, and the number of ways to assign regions is ≤ 2𝑐𝑐 + 1 18𝑞𝑞

• #labelings for regions is ≤ 𝐾𝐾2𝑐𝑐+1

∎
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• 𝑎𝑎 1 + 𝑗𝑗1
1 + 𝑐𝑐 1 + 𝑗𝑗2

1 + 𝑏𝑏 1 + 𝑗𝑗3
1 + 𝑑𝑑 1

+ 𝑗𝑗4
1 + 𝑗𝑗5

1 = 0

• −𝑎𝑎 2 − 𝑗𝑗1
1 − 𝑐𝑐 1 − 𝑗𝑗2

1 − 𝑏𝑏 2 − 𝑗𝑗3
1 − 𝑑𝑑 1

− 𝑗𝑗4
1 − 𝑗𝑗5

1 = 0

𝑤𝑤 ≔ 𝑎𝑎 1 + 𝑏𝑏 1

= −𝑗𝑗1
1 − 𝑐𝑐 1 − 𝑗𝑗2

1 − 𝑗𝑗3
1 − 𝑑𝑑 1 − 𝑗𝑗4

1 − 𝑗𝑗5
1

= 𝑎𝑎 2 + 𝑏𝑏 2

𝑤𝑤 ≔ 𝑎𝑎 𝑙𝑙 + 𝑏𝑏 𝑙𝑙

= −𝑗𝑗1
𝑙𝑙 − 𝑐𝑐 𝑙𝑙 − 𝑗𝑗2

𝑙𝑙 − 𝑗𝑗3
𝑙𝑙 − 𝑑𝑑 𝑙𝑙 − 𝑗𝑗4

𝑙𝑙 − 𝑗𝑗5
𝑙𝑙

= 𝑎𝑎 𝑙𝑙+1 + 𝑏𝑏 𝑙𝑙+1
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𝑤𝑤 ≔ 𝑎𝑎 𝑙𝑙 + 𝑏𝑏 𝑙𝑙

= −𝑗𝑗1
𝑙𝑙 − 𝑐𝑐 𝑙𝑙 − 𝑗𝑗2

𝑙𝑙 − 𝑗𝑗3
𝑙𝑙 − 𝑑𝑑 𝑙𝑙 − 𝑗𝑗4

𝑙𝑙 − 𝑗𝑗5
𝑙𝑙

= 𝑎𝑎 𝑙𝑙+1 + 𝑏𝑏 𝑙𝑙+1

• 𝑤𝑤 has 2𝑑𝑑 + 1  choices

• 𝑎𝑎 𝑙𝑙  is free

• 𝑐𝑐 𝑙𝑙 ,𝑑𝑑 𝑙𝑙 , 𝑗𝑗1
𝑙𝑙 , 𝑗𝑗2

𝑙𝑙 , 𝑗𝑗3
𝑙𝑙 , 𝑗𝑗4

𝑙𝑙  are free

• 𝑖𝑖1
𝑙𝑙  is free

• ̃𝚤𝚤1
𝑙𝑙  is free

• So, each 𝑙𝑙 has 9 free labels
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• ℒ is required to have 𝑐𝑐 ℒ  repeated edge labels

• Suppose we label the edges layer-by-layer, and within a layer, there is an ordering for the edges

• We say an edge is repeated if its label equal to a previous label up to sign in the ordering

• The total number of edges is 27𝑞𝑞

• At most 27𝑞𝑞 𝑐𝑐 ℒ  ways to choose which edges are repeated

• At most 2 × 27𝑞𝑞 𝑐𝑐 ℒ  ways to choose which previous edges to repeat

• So, there are 𝑞𝑞𝒪𝒪 𝑐𝑐 ℒ  repetition patterns

⋯repetition pattern:
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Fix 𝑤𝑤 and fix a repetition pattern. We need to bound the number of labelings

• For each 𝑙𝑙, the labels are partitioned into two classes: 𝑎𝑎𝑎𝑎  and 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ̃𝚤𝚤

• Each class has ≤ 25 edges, while there are 𝑐𝑐 ℒ  repeated edges in total. So, at least ⁄𝑐𝑐 ℒ 25 classes has 
repeated edges

• By a case study, you can check that each class with a repeated edge will has one fewer free label

If 𝑎𝑎 𝑙𝑙 ,𝑏𝑏(𝑙𝑙)  has a repeated edge, there are three cases:

• If 𝑎𝑎 𝑙𝑙  or 𝑏𝑏(𝑙𝑙) repeats a previous edge outside of this class, then the other label is 
determined, since 𝑎𝑎 𝑙𝑙 + 𝑏𝑏(𝑙𝑙) = 𝑤𝑤

• If 𝑎𝑎 𝑙𝑙 = 𝑏𝑏 𝑙𝑙 , then the labels are also determined (= 𝑤𝑤/2)

• If 𝑎𝑎 𝑙𝑙 = −𝑏𝑏 𝑙𝑙 , then it violates the condition (2) and the labeling is not valid
Thus, 𝑎𝑎 𝑙𝑙  is no longer a free label
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2𝑛𝑛 + 1  ⋅  𝑞𝑞𝒪𝒪 𝑐𝑐 ℒ  ⋅  𝑛𝑛9𝑞𝑞− ⁄𝑐𝑐 ℒ 25 = 𝑞𝑞𝒪𝒪 𝑐𝑐 ℒ 𝑛𝑛1+9𝑞𝑞− ⁄𝑐𝑐 ℒ 25

𝑤𝑤 #repetition 
patterns

#free 
labelings

Now, we are ready to compute the 𝑞𝑞-th moment
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𝔼𝔼 tr �𝑊𝑊 �𝑊𝑊⊤ 𝑞𝑞 = �
valid ℒ

𝑆𝑆ℒ𝔼𝔼 �
𝑣𝑣

ℒ 𝑣𝑣

≤ 𝑛𝑛9 2𝑞𝑞 �
valid ℒ

𝔼𝔼 �
𝑣𝑣

ℒ 𝑣𝑣

≤ 𝑛𝑛18𝑞𝑞�
𝑐𝑐=0

27𝑞𝑞

𝑛𝑛−27𝑞𝑞 ⋅ 𝑐𝑐 + 1 ! ⋅ 𝑐𝑐𝒪𝒪 𝑞𝑞 exp 𝑐𝑐 ⋅ 𝑞𝑞𝒪𝒪 𝑐𝑐 𝑛𝑛1+9𝑞𝑞− ⁄𝑐𝑐 25

 = exp 𝑞𝑞 ⋅ 𝑛𝑛 ⋅�
𝑐𝑐=0

27𝑞𝑞

𝑛𝑛− ⁄1 25𝑞𝑞𝒪𝒪 1 𝑐𝑐
𝑐𝑐𝑞𝑞

• If we set 𝑞𝑞 = log𝑛𝑛, then we have
𝔼𝔼 tr �𝑊𝑊 �𝑊𝑊⊤ 𝑞𝑞 = 𝑛𝑛𝒪𝒪 1

• So, 

𝔼𝔼 tr �𝑊𝑊 �𝑊𝑊⊤ 𝑞𝑞
1
2𝑞𝑞

= 𝑛𝑛
𝒪𝒪 1
log 𝑛𝑛 = 𝒪𝒪 1

Gaussian moments #vertex-labelings #edge-labelings
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Key Proposition. 

There is an event ℰ depending only on 𝑥𝑥𝑘𝑘  that happens with high probability over the 
randomness of 𝑥𝑥𝑘𝑘 . Conditioned on ℰ, we have 𝑀𝑀 𝑇𝑇, �𝑢𝑢 = 𝒪𝒪 log𝑛𝑛  with high probability 
over the randomness of �𝑢𝑢.

Proof.

• Pr �𝑊𝑊 >
𝔼𝔼 tr �𝑊𝑊 �𝑊𝑊⊤ log 𝑛𝑛

⁄1 𝑛𝑛

1∕ 2 log 𝑛𝑛

≤ 1
𝑛𝑛

• We have with probability 1 − ⁄1 𝑛𝑛, �𝑊𝑊 = 𝒪𝒪 1 . Let ℰ be this event

• Conditioned on ℰ,
Pr
�𝑢𝑢

𝑀𝑀 𝑇𝑇, �𝑢𝑢 ≥ 𝑡𝑡𝒪𝒪 1 ≤ 𝑛𝑛2𝑒𝑒− ⁄𝑡𝑡2 2

• Thus, with probability 1 − ⁄1 poly 𝑛𝑛 , 
𝑀𝑀 𝑇𝑇, �𝑢𝑢 = 𝒪𝒪 log𝑛𝑛

∎



September 17, 2025 62

Technical theorem. 

There is a matrix 𝑀𝑀 𝒯𝒯,𝑢𝑢 ∈ ℝ𝑛𝑛2×𝑛𝑛2  (computable in poly-time from 𝒯𝒯 and 𝑢𝑢) with the following guarantee. 
Let 𝑣𝑣 ∈ ℝ𝑛𝑛2  be the leading eigenvector of ⁄𝑀𝑀 𝒯𝒯,𝑢𝑢 + 𝑀𝑀 𝒯𝒯,𝑢𝑢 ⊤ 2. Let 𝑉𝑉 = mat 𝑣𝑣 ∈ ℝ𝑛𝑛×𝑛𝑛 and let 𝜏𝜏
∈ ℝ𝑛𝑛 be the top eigenvector of ⁄𝑉𝑉 + 𝑉𝑉⊤ 2. With high probability over 𝑥𝑥𝑘𝑘 , for any 𝑘𝑘 ∈ 𝐾𝐾 , we have 
𝜏𝜏, 𝑥𝑥𝑘𝑘 2 ≥ 0.99 with probability ⁄1 poly 𝑛𝑛 .

Proof.

We have proved that, for any 𝑘𝑘 ∈ 𝐾𝐾 ,

𝑀𝑀 𝒯𝒯,𝑢𝑢 = 𝛼𝛼𝛼𝛼 𝑇𝑇𝑘𝑘 , 𝑥𝑥𝑘𝑘 ⊗5 + 𝛼𝛼 𝑀𝑀 𝑇𝑇, 𝑥𝑥𝑘𝑘 ⊗5 − 𝑀𝑀 𝑇𝑇1, 𝑥𝑥𝑘𝑘 ⊗5 + 𝑀𝑀 𝑇𝑇, �𝑢𝑢 + 𝑀𝑀 𝒯𝒯,𝑢𝑢 −𝑀𝑀 𝑇𝑇,𝑢𝑢

To conclude the proof,

1. Show that the top eigenvector of 𝑀𝑀sym ≔ ⁄𝑀𝑀 𝒯𝒯,𝑢𝑢 + 𝑀𝑀 𝒯𝒯,𝑢𝑢 ⊤ 2 is close to 𝑥𝑥𝑘𝑘 ⊗2

2. Show that the top eigenvector of 𝑉𝑉sym ≔ ⁄𝑉𝑉 + 𝑉𝑉⊤ 2 is close to 𝑥𝑥𝑘𝑘

1 ± 𝑜𝑜 1 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 𝑥𝑥𝑘𝑘 ⊗ 𝑥𝑥𝑘𝑘 ⊤ ≤ 𝑜𝑜 1 ≤ 𝑜𝑜 1𝒪𝒪 log𝑛𝑛

(Possibly in your problem set)
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• Problem setup and examples

• Some easy algorithms

• Heterogeneous setting

• Main result: a spectral algorithm for heterogeneous MRA

• The trace method

• The blueprint of the algorithm

• Proof: the signal part

• Proof: the noise part

• Generalizations



Generalizations

September 17, 2025 64

• Orbit recovery with other groups?

→ Bandeira-Blum-Smith-Kileel-Perry-Wein-Weed: the sample complexity of list recovery for a compact group 𝐺𝐺 is 
Θ 𝜎𝜎2𝑑𝑑⋆  generically, where 𝜎𝜎 is the noise-level, and 𝑑𝑑⋆ is the degree of the invariant ring for 𝐺𝐺

→ Liu-Moitra: Smoothed analysis for SO(3) orbit recovery (cryo-ET)

Invariant theory and orbit recovery

• The ring of invariant polynomials consists of all polynomials 𝑞𝑞 that satisfy
𝑞𝑞 𝑔𝑔 ⋅ 𝑥𝑥 = 𝑞𝑞 𝑥𝑥  ∀𝑔𝑔 ∈ 𝐺𝐺

• The invariant ring determines 𝑥𝑥 up to its orbit, i.e., 𝑦𝑦 ∈ orbit 𝑥𝑥 ⟺ 𝑞𝑞 𝑦𝑦 = 𝑞𝑞 𝑥𝑥  ∀ invariant 𝑞𝑞

• Method of moment with group symmetry: How many moments suffices ⟺ At what degree do invariant 
polynomials generate the full invariant ring
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