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Recap
We introduced the tensor network diagram

We discussed some applications in qguantum computing (simulating quantum circuits) and quantum physics
(MPS, DMRG, etc)

Today: we’ll talk about a classical application of tensor network: orbit recovery

September 17, 2025 1



Today’s plan

Problem setup and examples
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Orbit recovery

Setup:
Let x € R™ be an unknown signal
Let G be a group with group action P: G - R™"

We get measurements of the form:
yi =P(g)x +n;
= g; is an independent, uniformly random element from G (under the Haar measure)

= 7; is an independent Gaussian noise V' (0, 021)

Goal: recover X close to some element in the orbit
{P(g)x|g€i}

For simplicity, we'll use g - x to denote the group action
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Example 1: multi-reference alignment (MRA)

Discrete MRA: G = Z.,, (random shift)

Continuous MRA: G = SO(2) (2D random rotation)
4 4
vy A
_4 —4
a a
o T
_4 4
a a
_4 4
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Example 2: cryo-electron tomography (cryo-ET)

. G =S50(3)

Jacques Dubochet
Joachim Frank
Richard Henderson

for developing cryo-electron microscopy for the high-resolu
Structure determination of biomolecules in solution”
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Cryo-electron microscopy (cryo-EM)

«  Cryo-ET + 2D projection
y; = Il(g; - x) + 1

1. Sample 3. Electron microscope
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Today’s plan

Some easy algorithms

September 17, 2025



Discrete MRA

Forg € G = 7Z,, we have
(g-x); = Xi—g (mod n)
Perry-Weed-Bandeira-Rigollet-Singer, 2017: algorithm for discrete MRA with optimal sample complexity

(m ~ a®)

===
We have seen this algorithm: learning mixtures of Gaussians /A J\\

Each sample y; = g; - x + n;. If g; is fixed, then J\ A A
S\—/\ 7

yi ~ N(g; - x,0°I)
Thus, the sample distribution can be expressed as a mixture of Gaussian with n components:
Ui =g;-x Vi€|[n]

6

To apply Jennrich’s algorithm, we compute the 3"“-moment, which needs ~ g°® samples

September 17, 2025 8



Continuous MRA

Forg € G = SO(2),whatis g - x for x € R™?

X X X X e XD
Lo 2 ( X; ) g [cos(g) —sin(ig) ( X; )
X = = . . .
X_1 X_p X_3 X4 x_% X-j sin(jg)  cos(jg) [\¥*-j
G can be parameterized by g € (0,27] The linear map g € R™*" is block-diagonal

It is convenient to work in the Fourier basis:

1 1
f] =—(X]+1X_]), f_] =—(x]—1x_]) V]>0

V2 V2

You can check that in the Fourier basis, g is a diagonal matrix (x; — eijgy?j)
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Method of moments

- Define the p-th moment in the Fourier basis:

T,(®) = E4[(g - £)®7] € R*™

- For any coordinates jy, ..., j, € [n], we have

> (®)jy,iy = Eg :(g %)), (g X)j, (g ’?)jp]

= E, |el9/1%; el9)2%; ... 19Jp fjp]

— Lig(Uit+ip)| 5. ... 5.
© P]le Xjp
= Yatotip=0 " Xjy " Xy,

- Given access to Ty, ...,Tp, can we reverse-engineer X?
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Frequency marching

« Consider the second moment:

- Thus, we can learn |9?]| for every j from T,
- To learn the phases, consider the third moment:
T30,y Gitiz) = %y o Xy 44)
- Since (g - £); = e'9%,, there exists an orbit such that £;’s phase ¢; = 0
« Then, using T3(®)_1 _1, = |%1|?%, and |%;|, we learn ¢,

»  Next, using T3(X)_1 —23 = X;X_,X3 and X_, = X, we learn ¢3

- We can repeat this procedure until we have learned all the phases
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Today’s plan

Heterogeneous setting
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Heterogeneous MRA

What if there are multiple molecules (or multiple conformations of the same molecule)?

2 K
) e, X

- Suppose there are K unknown vectors x?!, x
- We observe y; = g; - x*i + n;, where k; ~,, [K], g; ~ G, andn; ~ N (0,52])

- Can we still use frequency marching to recover {x/}?
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Frequency marching does not work

Consider the Fourier transform of the p-th moment:

K

N 1

T, ({£°}) = Ex g [(9 ' fk)@)p] = Ez Eg|(g - £)®7]
k=1

Thus, we have

K
1
~k _ - .Ak
Lo(BE)},,. = Lawtip=o- K ¢ Yip

Frequency marching breaks down from the first step: Signals are entangled!

K
N 1 2
L), ;= EE"C"'
k=1
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Does tensor decomposition help?

Consider the third moment:

Tg({xk}) — ﬁlz 2(9 ) xk)®3

=1 g€eaG
If G is a finite group, then this is a rank-K |G| tensor

If undercomplete, then we can just run Jennrich’s algorithm, and we’re done!

k

If overcomplete, we may either use higher moments (e.g., Ts) or assume x* are random vectors

Unfortunately, SO(2) is a continuous group (or Lie group) - this tensor has oo rank

X3

Moreover, the decomposition is not unique: if T3 = }/_; a;”" is a solution, then there are co-many

solutions T3 = Y7_,(g - a;)®3 forany g € [G]
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Today’s plan

Main result: a spectral algorithm for heterogeneous MRA
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for average-case heterogeneous MRA

Theorem (Moitra-Wein, 2018).

Let x1, ..., x% € R™ be drawn independently from V' (O,%I).

We are given the tensor T =T + E € R™"™ ™ where [|E|| < 1/poly(n) and

K
T=) Egl(g- )] _
k=1

There is an algorithm that runs in time poly(n) and
that has the following guarantee. With high probability over both x1, ..., x¥ and
the algorithm’s randomness,

Vk € [K], . t. (Ti,xk>2 > 0.99
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General recipe for spectral methods

Given input tensor T

- Step 1: Construct a new tensor B by contracting multiple copies of T
according to a tensor network

- Step 2: Flatten B to form a symmetric matrix M

- Step 3: Compute the leading eigenvector of M

We use the trace method to show that the top eigenvector is close to the orbit of x*
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Today’s plan

The trace method
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Interlude: the trace method

Let M be a random matrix, and our goal is to bound its spectral norm

Basic idea:

tr[M?¥] = ZA?" > [|M]|?*
[

Applying Markov’s inequality, we get the bound

E [tr[MZk]]
Pr[||M|| = t] = Pr[||M||?* = t2¥] < 12K

~N M—=M

[ W
I\/I—I\/I/

Tensor network! |V|
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Example

Suppose M is an n X n symmetric matrix with i.i.d. Rademacher entries and zeros along the diagonal
Ly
' 2
l6/ \ ]E Mil,izMiz,igMig,i4Ml'4,i5Mi5,i6Mi6,i1 — 1

M iff every {ij, i]-+1} occurs even number of times

N/

M—M
Combinatorial problem: tr[M?*] equals to the number of sequences (iy, ..., izx) € [n]?* such that every

{ij, ij+1} occurs in the sequence an even number of times

- At most k + 1 distinct labels in the sequences
k —h (il' ...,i4) = (a,, b, C, b) a b Cc (ill ___’i4) — (a’ b, a, C)
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Example

Suppose M is an n X n symmetric matrix with i.i.d. Rademacher entries and zeros along the diagonal

M —

| B

. lo

l6/ \ IEMil,izMiz,igMig,i4_Mi4_,i5Mi5,i6Mi6,i1 = 1

M iff every {ij, i]-+1} occurs even number of times

Combinatorial problem: tr[M?*] equals to the number of sequences (iy, ..., izx) € [n]?* such that every

{ij, ij+1} occurs in the sequence an even number of times
At most k + 1 distinct labels in the sequences
[M2K] < nkH - (k + 1)2 Furedi-Komlos: ||M|| = y/n

IM|| < +/nlogn (by taking k ~ logn)
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Today’s plan

The blueprint of the algorithm
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The blueprint

The algorithm takes a random order-5 tensor u (with i.i.d. NV'(0,1) entries)

The hope is that u has non-trivial correlation with some x in the orbit of one of x1, ..., xX

Compute the following tensor network:
P & Q: Why do we need a random tensor u?

a

A: Symmetry-breaking

Grouping _ L
) (T, u) € RV X"
{(a,b),(c,d)}

We want to show that if u = x®>, then
M(T,u) = x®2(x®2)T
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The blueprint

Use a simple tensor S € R™® to correct the tensor network:

Grouping -
) M(T,u) € R**"
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Main technical step

Technical theorem.

There is a matrix M(T,u) € RMxn? (computable in poly-time from 7 and u) with the following
guarantee.

Let v € R™ be the leading eigenvector of (M (T,u) + M(T,u)")/2.
Let V = mat(v) € R™™ and let T € R" be the top eigenvector of (V +VT)/2.

With high probability over {x*}, for any k € [K], we have (T,xk>2 > 0.99 with probability
1/poly(n).

Grouping

) M (T,u) € RV X
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Main technical step

Technical theorem.

There is a matrix M(T",u) € RMxn? (computable in poly-time from 7 and u) with the following

guarantee. Let v € R™ be the leading eigenvector of (M(T,u) + M(T,u)")/2.LetV =
mat(v) € R™" and let T € R" be the top eigenvector of (V + V1) /2. With high probability over

{x*}, for any k € [K], we have (T,xk>2 > (0.99 with probability 1/poly(n).

Proof of the main theorem:
Sample u4, ..., u; and use the technical theorem to obtain 74, ..., 7,
For any k, the overall failure probability is < (1 — 1/poly(n))* = exp(— L/poly(n))
By union bound over all k € [K], the total failure probability is < K exp(— L/poly(n)) = o(1)
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° ° = — . _|_ 1 .
Fourier transform in tensor network K ﬁ(x] ;)
P
= — (x—ix—)
We first define A to be the Fourier transform unitary matrix that transforms X to x V2

VAN -
O O

You can check that (ATA);; = 1;,__;

»
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Corrected tensor network

_ MT,uw)=0LQMNMT, wWAQNT
M(T,u)

(ST)abcd = SabcaTabed

September 17, 2025 29



Today’s plan

Proof: the signal part
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Correcting the signal

Goal: If we correctly guess u = (xk)®5, then M(T,u) ~ (x* ® x*)(x* ® xk) = Xk

- Wilog, we can write u = + 1, where @it L (x1)®5 (noise) w T
- LetT!:= IEg[(g - x1)®3] denote the 3@ moment of x1. Then 172
(1), = Lo Rh AR
IR
We want to match M(T?, (x1)®°) to X1 9734
is
. M(T?Y, (x1)®5)ab’cd = Sabed * Sapcd * XeXpRLIRT, where i
Sabcd *= z z (1a+lz i " L4 js= Lg)lf = |fi19|2 |fj11|2 |£115 :

wlg J1,e
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Sabcd = z z (1a+lz ip " 11+15 l9)|5c\ |x | | o |5C\]15 i

b9 J1,-
( )ab cd abcdsabcd fafgfclfcll
- Define
0 ifa=—-borc=—-d
Sabed = - otherwise
IExl [Sabcd]

- We will show that s,;4 is concentrated around its mean (which is independent of x1)

Proposition.

Fora # —b and ¢ # —d, we have |SgpcaSapca — 11 = O(n~%1) with overwhelming probability
,(x1)®%) — x| = 0(2).

over x1. Therefore,
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Linear constraints on the indices

il—i2=a
i1+j5—i9=0
i9+j4_i8=0

im—ig=d

i+ j3—ig=0 —
ic —ig=>b

s+ j,—i,=0

I3 — 4 =¢C

i3+j1_i2=0

lg = Js | 7/\- s i c

. . a o -ig RS SN

I’9 __]5 —a \ A/LQ/’ ‘-,jl T\i4 '

lg=Js —a—]1 i1, ‘\ W

. . . . b 7'
=lg—Js—a—j1—¢ R ! Py

. . . ~ J5 “J5 A - 7. [

l9+]4+d+]3+b T_____};_, .

ig +]4, + d +]3 _ig\\ 34//’/ J3 Y ‘f'

) ) ig' . < \ .
=g +js +d T BN

RS ~ 16
" " @8 \\ R —-"_.7—'
g+ Ja is o i

—Js—a—ji—C—ja—d—jzg—b

For any fixed (a, b, ¢, d), there are 5 “free” indices (ig, j1, j3, Ja, j5)

- Thus, the number of solutions is upper-bounded by n°

- We can also prove that the number of valid solution is lower-bounded by cn® for some small constant c,

by a careful counting argument
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Moments of random vector

Lemma. Letx! ~ N (0,I/n). Then, we have
E (|22 ]° - |21 |° |22 ] |22
o I = kin — el
f ky # ks, then E,a [(21) (22)] = 0

If i # +j, then £} and 9?]-1 are independent

Proof.

&} ~ N (0,1/(2n)) +in(0,1/(2n)) and &1, = (2})

2 1
x. | ~S —
| L ZnX
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Expectation:

IExl[sabcd] = Z Z (1a+12 i1 11+]5—19)IE 1“551' |x | | |5C\115|2]

wlg J1,-

— z z (1a+12 i, 11+15—19)®(n_14) Sapca only depends on n
l9]1

= @ (n ‘n 14) =0(n?)

Variance:

Var(s,,.q] = Var

ZZt ZVar Z:] + z Cov(Z, Z,r)
t=t’

< @(nS) O(n~ 28)+0(n9) 0(n=28) = 0(n™1?)

By Chebyshev’s inequality, they imply that |s4,c.0 — E[Sgpeall < 1721 with probability 1 — 1/poly(n)

Note that s, is a degree-14 polynomial of Gaussian variables. Gaussian hypercontractivity can boost the
probability to 1 — exp(—poly(n))

September 17, 2025 35



Proposition.

Fora # —b and ¢ # —d, we have S pcq4Sapca — 1] = O(n~%1) with overwhelming probability
,(x1)®%) — x| = o(D).

over x1. Therefore,

We have proved that fora # —b and ¢ # —d,
( )ab cd SabcaSavea * XaXpXeXg = (1 £ n "D RIR 2%,

Thus, we have
[M(T?, (xH)®°) — X1

M(Tl, (x1)®5) _ (xl 0% xl)(xl 0% xl)T
M(Tl, (x1)®5) _ (fl R fl)(fl R fl)T
M(Tl, (x1)®5) _ (fl R fl)(fl R fl)T
\/n‘* - (n01.71-2)2 4 213 . (n=2)2

= 0(1)

IA

IA

The proposition is then proved
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If correctly guess u = x*, then Road /]TQ |

M=~ (x* @ x*)(x* ® xk)T B
map

u=oax" +1, ol ot -
M@, u) = aM (T, (%) + a (M(T, )®%) = M(T?, (x)5)) + (M(T,w) — M(T,w)) + M(T, )
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If correctly guess u = x¥, then M

~ (xk R xk)(xk R xk)T

u=ax" +1, L xt

Road
map

)

o]

MT,u) =|aM (T, (D)%) |+ a (M(T, )®%) = M(T?, (x)®5)) + (M(T,w) - M(T,w)) + M(T, )

4

=(1+0())(x* ® x*)(x* ® xk)T

September 17, 2025
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If correctly guess u = x¥, then M

~ (xk R xk)(xk R xk)T

u=ax" +1, 1 xt

Road
map

M@T,u) = aM (T, (%) +Ha (M(T, )®%) = M(T?, (x)®5)) + (M(T,w) - M(T,w))

4

September 17, 2025
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[M(7, G)®5) - M(T, G)B5)]| = (D)

IM(T,u) = M(T, Wl = o(1)

39
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If correctly guess u = x*, then

M=~ (x* @ x*)(x* ® xk)T

u=ax" +1, 1 xt

M@, u) = aM (T, (%) + a (M(T, )®%) = M(T?, (x)®5)) + (M(T,w) — M(T,w)) + M(T, D)

4 4

Road
map

L4

Y

-

Non-negligible!

Random tensor contraction (i ~ N (0,X))

The trace method to upper bound ||W||

Combinatorial problem of counting labels

R IM(T, @) = /Togn
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If correctly guess u = x*, then

M=~ (x* @ x*)(x* ® xk)T

Road
map

-

u=ax" +1, 1 xt

M@, u) = aM (T, (%) + a (M(T, )®%) = M(T?, (x)5)) + (M(T,w) — M(T,w)) + M(T, )

]

v

x! can be recovered from the top eigenvector of M (T, u) J

As long as we sample sufficiently many u’s, we can “hit” all x* w.h.p. i}
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Today’s plan

Proof: the noise part
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Towards proving the technical theorem

Recall that u = a(x1)®> + ii, and our final goal is to analyze

MT,uw) = aM(TY, (x1)®%) + « (M(T, (x1)®%) — M(T?, (x1)®5)) + M(T, @) + (M(T,uw) — M(T,w))
\ Y J \ Y ]\ . ]\ y J
~ X! heterogeneous signal term noise term error term

Key Proposition.

There is an event € depending only on {x*} that happens with high probability over the

randomness of {x*}. Conditioned on &, we have |[|[M(T,%)|| = 0(,/10g n) with high probability
over the randomness of .
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M(T, %) = (Iz @2 @ W
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Interlude: random tensor contraction

Theorem (Ma-Shi-Steurer, 2016).

Let W € RP X R? X R" be an order-3 tensor. Let i ~ NV (0,X) with r X r covariance matrix
satisfying 0 < X < [. Define

L = max{||W1y 23|, [ Wesy |} -

Then forany t = 0,

t2

Pﬁr[||(1p Q1 QU)W| =t] < 4(p+ qle 212

L serves as the Lipschitz parameter
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Lipschitz property

Define A(w) = (I, ® I, @ u)W = Dielr] Wi Wk

Foranyu,v € R", we have

14@) — AW = || ) (i = vOW
ke[r]
= sup (U — Vi) (Wi, xy ")
x€ERP:||x||=1, el
YERYZ:||y|[=1

1/2
< sup J|lu—v|- Z (Wi, xy ")
XERP:||x||=1, ke[r]

yeRZ:|lyll=1
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—)

September 17, 2025

/2

2
— T
reRP =1, <Z<Wk'xy ) L 1(2 (" Wiez) )

yeRdflyll=1 “FELT]
1/2
< sup z sup (x "W, y)?
llx[|=1 lyll=1

ke[r]
, 1/2
- sugl(z i x| ) = W s
lxll=1\
/2 /2
Z (Wi, xyT) = z (x T Wyy)?
xe]R ||x|| L\ & IIyII 1I|x|I 1
yER:|lyll=1
1/2
< sup (2 sup (x "W,y) )
IVI=1 e Ixli=1
1/2
— <] - —
14@ =A@ < L - flu—vl = sup ( D IWl?) = [Wosy o
Ivli=1\ &

u - ||[A(u)|| is L-Lipschitz
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Back to the proof of Key Proposition

Applying that theorem to M(T, 1) = (1,2 ® .,2 @ i)W, we have
Pr{||M (T, D)l = tL] < n?e~*"/2,
u

where

L = maX{”Wab,cdjl...js”t ||Wabj1...j5,Cd||}

By symmetry, we just consider the first one, and define W € R xn.

~

Wab,cdjl...jS = Wab,cd,jl...jS

We need to upper bound ||W||
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Recap: the trace method

Theorem.
For any real-valued random matrix Y, for any integer ¢ = 1 and any € > 0,

R
Pr(llY]l > (E[tr[(yemq”>2q

IN
m

tr [(WWT)CI] can be represented as a huge TN G, by connecting 2q copies of the TN for W in aring

Computing E [tr [(WWT)CI” is reduced to a combinatorial problem of labeling G,
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Tensor network for the trace method

- (1)

T --_ % (1
4 ) S
e 1 o=
A W . l‘ T
N (1) i2 e l‘j(l) // \\ (1)
\\(1\ //, ll ! /c(l) \\%4
T \A ~(1) N / \\
. ~(1 1 (1) _a(1) N
(1 / =(1) ) T  -ig)
iy a7 T R
/ ~ ’/ \\24 \\
, T lae R T
(1) .'I B! rl \\?(2) . T--. 4 N -7
! ,/ ~(1) ¢ T - l\ / N T - él) 72 : (1)
1 / ~ I Ig
~ ~ 5
T)q / (1) (1) / N T :*1:(1) !
~ - ~ A 5 :
tr | (WW S L o
\ \ \ ~ |—i£_) ) I
\ R L T - | ()
\ _i(l) \\ - 1 \ s p(2) (5)\‘* - : 5
FON o r_. b T |
9 \ "1(1)\ S .- T / '
\ tg " T /~(1) I
\ - s T ~ <
Coum T ) SCEAThEN
AN O | O N e 6 b
9 \\ 4 // 8 ~(1) ~ o . - _.(I)T 7 @(1)
~ 7 s T = =) \ ,0 6
7 \ rd bl .
T. For FIONN - S is not shown
. [ AY s —'i
_@él) o e / jél) v 6
\\ I -
.(1) \‘\ 1 -F_F___.-"—.(’l)
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Labeling the TN graph

A labeling L of G, is to assign every edge a pair of indices (i,, —i,) for any i, € [n/2], and assign every
vertex v (i.e., T in the graph) an index k,, € [K].

l.
Ky, Ky, Ky

L2
. ) ) ) =1 . i _nX. V.
—l4 11013 —l3 L(v) l1+lz+lg—0xll xlz xlg

E [tr [(WWT)qu - F [Z S 1_[ L(v)

where

q
Sc= | | 9a0p®c®a® * S (LqH) (D) (D) (—qa®)
[=1
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Labeling the TN graph

E [Z S, 1_[1:(1;)
L v

Let c(L) be the number of repeated labels:

— ZSLIE

L

1_[1:(1;)

c(L) == Z max{0, (#edges with label + i) — 1}
i€[p/2]
The vertices with the same label k,, form a region. Let (L) be the number of regions:
r(L) = #distinct k,, values
A labeling L is valid if:
1) iy + iy + i3 = 0 at every vertex ) L(v)#0
) a®W = —bpW and ¢® = —dW for every layer ) S5+ 0
3)  Each region has as many incident i labels as incident - i labels = E[..] #0
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Labeling the TN graph

Claim. For any valid labeling £ with r(£) > 1, we have c(£) = r(£)/2.

Proof.

Since the number of regions > 1, and each region has an even number of cut edges (otherwise condition
(3) is violated)

So, the total number of cut edges is = r (L)

Since every cut edge with label (i, —i) can be matched to another edge with label (—i, i), the number of

repeated edges is at least (L) /2
—1 7 H

September 17, 2025 53



Counting the valid labelings

Lemma. The number of valid edge-labelings with exactly c(L) repeated labels is at most
qO(c(L))n1+9q—c(L)/25

Lemma. For avalid edge-labeling with ¢ repeated labels, the number of valid vertex-labelings is at
most

c(£)0@ exp(c(L))
Proof.
r(L) <2c(L)+1
#vertices = 18¢, and the number of ways to assign regions is < (2¢ + 1)184

#labelings for regions is < K?%¢*1
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Linear constraints in the TN graph
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Number of free labels
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w = al® +pW
(1 () .
= —j? —c®—j3? =’ —a® -
— q+tD) 4 pU+D)

(1
I

(1
e

w has (2d + 1) choices
aW is free

C(l),d(l) OO OO

J1 s Jo oJ3 sJg  are free

(1) .
l§ ) is free
;" isfree

So, each [ has 9 free labels




Number of repetition patterns

- Lis required to have c(£) repeated edge labels
- Suppose we label the edges layer-by-layer, and within a layer, there is an ordering for the edges

- We say an edge is repeated if its label equal to a previous label up to sign in the ordering

repetition pattern: ‘ ‘ ‘ ‘ ‘ ‘ ‘

DY T N
K <l)(1) iél)/// g \{_IJ'EU :’T N
+ The total number of edges is 27q I S G
o W e ; {ng:cm &
C (L) H /,, ) /T ::G(Q()Z . A /: T
- At most (27q) ways to choose which edges are repeated R VARG B
J im T o T - L
(D) . _ FAAL g g :
- Atmost (2 X 27q) ways to choose which previous edges to repeat Dok T s W
il \\\\ 7/(«.)( )\T\ \T“‘T //7(};;1) /7:1(;)
. So, there are g?(¢®Y) repetition patterns R L L
i - du)”,’ j?iT i
) o
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Repetition pattern reduces free labels

Fix w and fix a repetition pattern. We need to bound the number of labelings
For each [, the labels are partitioned into two classes: {ab} and {cdjii}

Each class has < 25 edges, while there are c(£) repeated edges in total. So, at least ¢(L)/25 classes has
repeated edges

By a case study, you can check that each class with a repeated edge will has one fewer free label

If {a(l), b(l)} has a repeated edge, there are three cases:

If a® or b® repeats a previous edge outside of this class, then the other label is
determined, since a®® + b = w

If a® = bW, then the labels are also determined (= w/2)
If a® = —p®, then it violates the condition (2) and the labeling is not valid

Thus, a® is no longer a free label

September 17, 2025 58



Total number of valid edge-labelings

2n+1) - qoc@) . p2%a-c)/25 = G0(c(D)y1+99-c(£)/25

) ! ) | J
| { |

w Hrepetition #free
patterns labelings

Now, we are ready to compute the g-th moment
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E || (W)’

Y s

1_[ L)

valid £
<@y ) E|| [cw
valid £ v
27q

< n18q Z(n—27q . (C + 1)!)‘,‘ (CO(q) exp(c))’,‘(qO(c)n1+9q—c/25)
Y Y Y

“=%Gaussian moments #vertex-labelings  #edge-labelings

27q
= exp(q) ‘N - Z(n_l/zsqo(l))ccq
c=0

If we set g = logn, then we have

So,
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Bound the noise term

Key Proposition.

There is an event € depending only on {x*} that happens with high probability over the
randomness of {x*}. Conditioned on &, we have ||M (T, )| = O(w/log n) with high probability
over the randomness of .

Proof.

| 1/(2log n)-
(el
Pri||w| > <

1/n

S|

W|| = 0(1). Let € be this event

We have with probability 1 — 1/n,

Conditioned on &,
Pr{lIM(T, @)l = tO(1)] < n2e~t"/?
u

Thus, with probability 1 — 1/poly(n),

IM(T,%)|| = 0(,/logn)
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Technical theorem.

There is a matrix M(T",u) € R7**n* (computable in poly-time from 7" and u) with the following guarantee.

Let v € R™ be the leading eigenvector of (M(T,u) + M(T,u)")/2. Let V = mat(v) € R*™™ and let T
€ R" be the top eigenvector of (V + V1) /2. With high probability over {x*}, for any k € [K], we have

(T,xk)z > 0.99 with probability 1/poly(n).

Proof.

We have proved that, for any k € [K],

M@, u) = aM (1%, (x¥)%°) + a (M (7, (x*)®°) = m (1", (xk)®5)) + M(T, %) + (M(T, w) — M(T,w))
| Y ) \ . Y ) \ J \ Y J
(1+0(1))(x* ® x*)(x* @ x*) < o(1) 0(y/Togn) <o0(1)

To conclude the proof,
1. Show that the top eigenvector of Mgy, == (M(T,u) + M(T, u)")/2 is close to (xk)®2

2. Show that the top eigenvector of Vs, = (V+VT)/2is close to x*

(Possibly in your problem set)
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Today’s plan

Generalizations
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Generalizations

- Orbit recovery with other groups?

- Bandeira-Blum-Smith-Kileel-Perry-Wein-Weed: the sample complexity of list recovery for a compact group G is

@(02‘1*) generically, where o is the noise-level, and d* is the degree of the invariant ring for G

- Liu-Moitra: Smoothed analysis for SO(3) orbit recovery (cryo-ET)

Invariant theory and orbit recovery

- The ring of invariant polynomials consists of all polynomials g that satisfy
q(g-x)=qx) Vgea

- The invariant ring determines x up to its orbit, i.e., y € orbit(x) < q(y) = q(x) V invariant g

- Method of moment with group symmetry: How many moments suffices < At what degree do invariant
polynomials generate the full invariant ring
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